Decarbonising Industry: Towards a Cleaner Economy

Dr Samuel J.G. Cooper is a Research Associate in the Department of Mechanical EngineeringProfessor Geoffrey P. Hammond is Professor of Mechanical Engineering at the University of Bath, and was Founder Director of its Institute for Sustainable Energy and the Environment.

The Climate Change Challenge

Human development is underpinned by energy sources of various kinds that heat, power and transport its citizens in their everyday lives. But, while energy supplies and technologies underscore continued economic development, they also give rise to unwanted side-effects, such as the prospect of global warming due to an enhanced greenhouse effect induced by fossil fuel combustion. The British Government has introduced a bold, legally binding target of reducing the nation’s CO2 emissions overall by 80% before 2050 in comparison to a 1990 baseline in their 2008 Climate Change Act. Achieving this carbon reduction target will require a challenging transition in Britain’s systems for producing, delivering and using energy that is not only low carbon, but also secure and affordable; resolving the so-called energy policy ‘trilemma’.

Reducing industrial energy demand and improving resource efficiency could make a substantial contribution towards the UK Government’s 2050 goal of achieving 80% decarbonisation, whilst simultaneously improving productivity and creating employment opportunities. In this context, the British Government released its Clean Growth Strategy in October 2017, although it has a number of identifiable weaknesses. The associated technology roadmaps exhibit quite large uncertainties, and decarbonisation over the long-term will depend critically on the adoption of a small number of key technologies, alongside the decarbonisation of electricity supply. ‘Circular economy’ interventions have the potential to make significant energy savings that are complementary to other energy efficiency measures. But the task for both industrial and policy decision-makers will still be challenging.

The Importance of Industry in Securing a Clean Economy

Industry in the UK accounts for some 17% of total delivered energy and 20% of CO2 emissions. There are large differences between processes – from highly energy-intensive steel production and petrochemicals processing to low-energy electronics fabrication. The former sector typically employs large quantities of (often high-temperature) process energy, whereas the latter tends to be dominated by energy uses associated with space heating. Around 350 separate combinations of sectors, devices and technologies can be identified; each combination offers quite different prospects for energy efficiency improvements and carbon savings, which are strongly dependent on the specific technological applications. This large variation across industry requires tailored solutions for separate industries.

The British Government’s independent Committee on Climate Change (CCC), established under the 2008 Climate Change Act, has advocated deep cuts in power sector operational emissions through the 2020s, with UK electricity generation being largely decarbonised by 2030-2040. In recommending the Fifth ‘Carbon Budget’ for the period 2028-2032, they proposed a 57% fall in greenhouse gas (GHG) emissions below 1990 levels by 2032. However, they viewed industrial decarbonisation as a difficult area in which to secure appropriate savings. There is clearly a need for research aimed at providing better information in support of UK industrial strategy for policymakers, including the potential impact of fuel switching, as well as the identification of difficult sectors and/or processes and areas where investment could be targeted most effectively. GHG emissions are not the only environmental burden that stems from industrial activities. However, ‘carbon footprints’ have become the ‘currency’ of debate in a climate-constrained world.

From Industrial Sectoral Analysis to Strategy

The GHG emissions from UK industry can be split by sector, comprising those from energy use (including GHGs indirectly emitted from electricity use) and process emissions. Industrial sectors with significant process emissions are steel, chemicals, cement, aluminium, glass, ceramics and lime. Information on energy use, emission conversion factors and process emissions can be combined in order to determine the total emissions. This reveals that a number of sectors dominate GHG emissions from the industrial sector, and suggests Pareto-like priorities for decarbonisation: steel (25%), chemicals (19%), cement (8%), food & drink (7%), paper (6%), plastics (6%) and so on. Thus, just six sub-sectors account for 71% of UK emissions. However, the post-2008 economic recession resulted in the ongoing closure of some large plants, particularly aluminium smelters and steel mills. The British Government, led by its Department for Business, Energy and Industrial Strategy (BEIS), released its Clean Growth Strategy (CGS) in October 2017, alongside seven Industrial Decarbonisation and Energy Efficiency Action Plans produced jointly with industrial partners covering different industrial sectors. Thus, the Action Plans contain voluntary commitments to reduce GHG emissions, whilst “maintaining international competitiveness”.

The Minister for Energy and Clean Growth (the Rt Hon Claire Perry MP) regards the CGS as a “march on a decarbonisation pathway” for the UK economy. A novel focus of the strategy is on the notion of growing national income whilst cutting GHG emissions. It is argued that this will improve productivity, create ‘good jobs’ and enhance the earning power of employees at the same time as meeting the climate change and environmental objectives of the UK. The CGS sets out an aim to improve energy productivity by at least 20% over the period to 2030. This will be stimulated, in part, by a Government investment of £162 million in clean growth innovation funding out to 2021 via a new BEIS Energy Innovation Programme, including greenhouse gas removal (GGR) technologies; much of this funding will be earmarked for industrial carbon capture and storage (CCS). Claire Perry also has an ambition to accelerate green finance and regulatory frameworks that will encourage new business models for the UK. BEIS will seek to monitor progress with these interventions via a Clean Growth Inter-Ministerial Group, aided by a new metric – the Emissions Intensity Ratio (EIR), defined in terms of GHG emissions per unit of national income. The Government wants this EIR to fall by 63% between now and 2032. Subsequently, the CGS and associated Action Plans were underpinned by the Government’s Industrial Strategy White Paper published in November 2017, which has as a grand challenge the aim of taking advantage of the “global shift to clean growth” for the benefit of UK industry. The overall emphasis is on improving productivity via the encouragement of innovation, research and development (R&D), and skills training. It envisages a large increase in public investment in R&D, through an Industrial Strategy Challenge Fund (initially of £275 million), together with the commercialisation of its outputs.

Weaknesses in the UK ‘Clean Growth Strategy’

The much-delayed publication of the CGS has been generally welcomed by both industry and civil society groups, including organisations in the energy efficiency and carbon reduction field such as the Carbon Trust and Energy Savings Trust. The CCC also welcomed it as representing a move in the right direction. However, they voiced concern over the vagueness of many of the suggested climate change mitigation actions and the potential reliance by the UK Government on what they regard as ‘flexibilities’ in the 2008 Climate Change Act in order to meet the requirements of the Fifth Carbon Budget targets. The CCC view such flexibilities as “banking and borrowing”, whereas they believe that future carbon budgets out to 2032 at least should be met by way of domestic action. They regard banking emissions from the overachievement in emissions reductions under the Second and Third Carbon Budgets as a retrograde step. It could put at risk the UK commitment to achieving the goals of the Paris Agreement, which includes a much greater challenge of moving towards 1.5°C global warming than the 2°C target in place when the CCC originally recommended their Fifth Carbon Budget goals. It would also undermine investor confidence in the development of innovative technologies, such as CCS or carbon capture and utilisation (CCU). Indeed many antagonists, not just those in the CCS community, have expressed disappointment at the rather modest ongoing support promised for GGR technologies. There is a clear need to explore whether CCU can be taken beyond a few niche products.

Technological Options for Industrial Decarbonisation

There is significant potential to secure efficiency gains in UK industry, including gains associated with the use of heat and with improvements in processing. A series of studies (see here, here and here) at the University of Bath found that currently-available technologies are likely to lead to further, short-term energy and GHG emissions savings in industry, but that the prospects for the commercial exploitation of innovative (so-called ‘disruptive’) technologies by mid-21st century are far more speculative. There are a number of non-technological barriers to the take-up of such technologies going forward. Consequently, the transition pathways to a low-carbon future in UK industry by 2050 will exhibit large uncertainties. But the attainment of significant falls in GHG emissions over this period will depend critically on the adoption of a limited number of key technologies, for example:

  • Energy efficiency and heat recovery techniques [including combined heat and power (CHP) plants (particularly biomass-CHP), and industrial heat pumps]
  • Fuel switching, principally to biomass or bioenergy [but potentially to hydrogen (H2)]
  • Carbon capture, utilisation and storage (CCU/CCS) – although the CCS and CCU research communities in the UK have quite divergent views on the potential economics and take-up of these technologies.
  • Decarbonisation of electricity supply, facilitating, for example, low-carbon electrification of heating for both industrial buildings and processes.

The suitability of these measures depends on the nature of the industrial sector concerned. Energy efficiency measures often have a relatively short payback period. Significant potential exists for reusing this surplus (or waste) heat from industrial processes, particularly at low temperatures via the utilisation of heat exchangers. Such heat could also be converted to electricity by employing innovative technologies, like organic Rankine cycle devices. These technologies exist in commercial applications, but are not well established; support for their development and installation is therefore required in order to increase their use. CHP plants are an important and available option at a large, industrial scale. Take-up is already encouraging in many industrial sub-sectors. In contrast, heat pumps are technologies which, at both a small (domestic) and industrial scale, have been slow to take off. Bioenergy systems are largely available technologies, limited mainly by restrictions on indigenous, sustainable biomass and biogenic waste resources, delivery and social factors. Sustainable bioenergy is a renewable resource that is often low-carbon and potentially gives rise to ‘carbon sinks’ or ‘negative emissions’ when coupled to CCS facilities. Bioenergy CCS is likely to have a potentially important role in securing the 1.5℃ global warming target under the 2015 Paris Agreement on climate change. It will require continuing research, development and demonstration as it is typically regarded as an unproven technology at the present time. The potential for generating a modern ‘bioeconomy’ is recognised in industrial sectors such as chemicals and the paper products industry. However, virtually no bioenergy is currently used in the chemicals sector, except for the production of bio-hydrogen. There are substantial prospects for producing high-value chemicals from biomass feedstock in state-of-the-art biorefineries. They will yield substitutes to many of the chemicals and plastics presently based on fossil fuel feedstocks.

Many industrialists view CCS/CCU as being costly technologies that will probably continue to be prohibitively expensive out to 2050. Possible exceptions to that are sectors with large processing facilities, such as chemicals and steel plants. The clustering of GHG networks between electricity generators and industrial process plants, together with their coupling to offshore storage facilities, is an important requirement for the practical adoption of CCS (and possibly CCU) in the UK and elsewhere. This requires ongoing research, development and demonstration as part of a collaborative programme with the manufacturing and processing sectors, and electricity and gas supply utilities. Nevertheless, all steam crackers and ammonia plants are situated within potential UK CCS cluster regions. Pipeline technology for building a CO2 transport network is ready to be rolled out, and the UK already has preliminary plans for at least two large GHG transport ‘hubs’ that will eventually be centrally located amongst a cluster of CCS power stations and industrial sites. The cost of capture from ammonia is also very low, because of the purity of its process CO2 emissions. In addition to these options, there is scope in some industrial sectors (such as pulp and paper) for the adoption of Demand-side flexibility techniques, whereby levels of electricity demand are increased, reduced or shifted, and on-site energy storage then enables the optimisation of electricity usage. This also has major advantages in the context of an energy infrastructure designed to meet occasional peak demands.

Towards a ‘Circular Economy’

Circular economy (CE) interventions – sometimes termed ‘value chain collaboration’ by BEIS – seek to reorganise products and services to improve resource-use efficiency by designing out waste and recycling and reusing materials, thereby minimising their negative side-effects. Arguably, measures of this type will reduce the use of resources required in order to satisfy consumption sufficiently to achieve sustainable development goals and mitigate climate change. Such strategies slow throughput of materials across the economy. The approach has achieved prominence via the European Commission’s Circular Economy Package. It has also been championed by the Ellen MacArthur Foundation, who present it more broadly in terms of expanding the ‘waste hierarchy’, ‘circling longer’, or enabling cascaded use. The Foundation claims that these approaches increase employment, more effectively capture value, mitigate exposure to supply chain and market risks, and better develop customer relationships. Such approaches can be viewed as an alternative to the conventional linear ‘take-make-consume-dispose’ economic model.

The implications of CE interventions have recently been studied by the University of Bath research team in collaboration with partners at the University of Leeds. They collated evidence on specific quantifiable approaches, and then calculated their combined overall supply chain impacts via input-output analysis. Several potential CE interventions were examined in a global context, across the EU-27 and in the UK. They were found to have similar overall potential to save energy as industrial energy efficiency measures. Some CE approaches improve business-to-business interactions, whilst others ensure that the needs of consumers are met with less resources. CE interventions may be characterised as ‘getting more out’ and ‘putting less in’. Examples of the former include reducing material content of products via optimised designs or stronger materials, reducing losses of materials through improved manufacturing processes with better material production yields, and enhanced recycling. Techniques for ‘getting more out’ were found to have greater potential in the UK than those associated with ‘putting less in’.

Securing a Decarbonisation Pathway for Industry

A number of options and priorities for industrial decarbonisation and improved resource efficiency in the UK have been articulated. But the task for both industrial and policy decision-makers will be challenging. The aspirations highlighted in the UK Government’s recent CGS need to be clarified and more clearly elaborated. In order to achieve its commitments under the 2015 Paris Agreement, the UK Government should not rely on accounting ‘flexibilities’ (what the CCC regard as “banking and borrowing”) or reliance on international carbon credits. The joint industry-government Action Plans and forthcoming Sector Deals will have to be delivered in partnership. The technology roadmaps to 2050 exhibit quite large uncertainties, and the attainment of significant falls in GHG emissions over the long-term will depends critically on the adoption of a small number of key technologies (highlighted above), alongside the decarbonisation of the electricity supply. Clearly a range of policy instruments are required in order to implement the CGS and its associated opportunities. They will need further articulation over the coming months and years. Thus, a credible range of measures for decarbonising the economy, and industry in particular, need to be established – putting the ‘meat on the bones’ of the framework set out in the strategy. The potential of CE interventions to achieve additional, significant savings should be recognised and policies designed to encourage their uptake.

This blog post is part of the Future Policy Challenges series, a new series of IPR Blogs with a focus on science, technology and innovation that highlights some of the crucial issues policymakers may face in the coming years. Subscribe to the IPR blog to get the latest blog posts, or to keep up to date with our activities, connect with us on TwitterFacebook or LinkedIn. You can also follow the hashtag #FuturePolicyChallenges for more on this series.

Read the original post here.

Industrial energy, materials and products: UK decarbonisation challenges and opportunities

Read the full paper here.

Abstract

The United Kingdom (UK) has placed itself on a transition pathway towards a low carbon economy and society, through the imposition of a legally-binding target aimed at reducing its ‘greenhouse gas’ (GHG) emissions by 80% by 2050 against a 1990 baseline. Reducing industrial energy demand could make a substantial contribution towards this decarbonisation goal, while simultaneously improving productivity and creating employment opportunities. Both fossil fuel and process GHG emissions will need to be significantly reduced by 2050. Ultimately, all industrial energy use and emissions result from the demand for goods and services. Energy is required at each stage in the manufacture of a product from raw material extraction through to the final distribution and eventual disposal. The required energy and associated GHG emissions along UK supply chains emanate from many different countries, due to the growth of globalisation. A range of socio-technical methods for analysing decarbonisation have therefore been explored. Efficiency gains can be made in industry, including those associated with the use of heat and with improvements in processing. Changes in the materials needed to manufacture products (via material substitution, light-weighting and ‘circular economy’ interventions) can also lead to emissions reductions. Likewise, altering the way the final consumer (industry, households or government) use products, including through product longevity and shifts from goods to services, can further reduce energy demand. The findings of an interdisciplinary study of industrial decarbonisation is therefore reported. This gave rise to the identification of the associated challenges, insights and opportunities, in part stemming from the development of a novel set of 2050 decarbonisation ‘technology roadmaps’ for energy-intensive industries in the UK. These determinations provide a valuable evidence base for industrialists, policy makers, and other stakeholders. The lessons learned are applicable across much of the wider industrialised world.

Jannik Giesekam presents at Ecobuild 2018 and International Energy Agency Expert Dialogue

On the 8th March CIEMAP researcher Jannik Giesekam presented at the Ecobuild conference in London. His presentation was part of a main conference session entitled: Sustainability report for the UK built environment – doing well or could do better? The session was chaired by Julie Hirigoyen, chief executive of UKGBC. Other speakers included Adrian Gault (Chief Economist at the Committee on Climate Change), Bill Dunster (ZEDfactory), Louise Clarke (Berkeley Group) and Stephanie Wray (President of CIEEM). The session was inspired by a recent UKGBC project gathering indicators of sustainability in the UK built environment, to which CIEMAP contributed. Jannik’s conference presentation highlighted current progress in carbon reduction and the changing use of resources in the sector. His slides can be downloaded here.

On the 9th March Jannik also presented at an Expert Dialogue on Material Trends in Buildings Construction arranged by the IEA. The dialogue brought together 35 experts and key stakeholders from across the globe at the Saint Gobain headquarters in Paris. The dialogue was in support of a new IEA project studying the demand of key materials in the context of 2°C ambitions, and the potential for increased material efficiency. All presentations from the day can be downloaded here.

Poorest households hit hardest by UK climate change levy despite using least energy

John Barrett, University of Leeds and Anne Owen, University of Leeds

The UK is one of the leading countries in addressing climate change. As well as signing international agreements, the country has its own target to reduce greenhouse gas emissions by 80% from 1990 levels by 2050. And as part of the effort to meet that target, the government has added a levy to business and household energy bills. The average household energy bill is around £1,030 a year and the levy costs an average of £132 (2016 figures).

The good news is that the levy is working. About 20% of the levy is spent on improving the efficiency of homes. This is done by funding schemes such as the Energy Company Obligation, which provides insulation and other energy-saving measures to low-income households. The average household energy bill would be £490 higher without these improvements. The money is also spent on research to improve renewable energy sources, such as wind and solar power, and help bring down their cost.

But is this really a fair way to raise the money? Our new research shows that the poorest households not only are hit hardest by the levy but also receive less money back in the form of home improvements than they contribute in the first place.

To study the levy, we divided the UK into “income deciles”, ten groups each representing 10% of the population, divided from the lowest to the highest income. We then looked at how much energy use they were responsible for, both directly through their electricity, gas and fuel use, and from the other goods, services and infrastructure they use. The levy is only raised on a limited number of these “energy service demands”, namely home heat and power. So if your overall energy demand is higher for heat and power and lower for other services, you’ll pay a proportionally higher amount of the energy policy costs.

Energy demand by income decile (group 1 lowest income, group 10 highest) and energy service.
University of Leeds, Author provided

We found that, in a year, the richest households each consumed on average the same amount of energy that would be produced by 12.7 tonnes of oil, compared to 3.3 tonnes for the poorest households. But the poorest spent a much greater proportion of their income (10%) on energy than the richest (3%). And the energy used for heating and powering their homes – the part that their climate change levy bill is measured on – represented a much greater proportion of their overall energy use.

This means that adding the climate change levy to household energy bills hits the poorest households hardest. Energy bills account for a much greater share of their household income and more of their energy use is charged. In fact, the levy only affects a quarter of the total energy consumption of the richest households, compared to 53% for the poorest households. As a result, the richest homes use nearly four times more total energy than the poorest but only pay 1.8 times more towards energy policy costs.

One argument for the climate change levy is that poorer households benefit more because part of it is used to improve the efficiency of their homes. But we estimate that the poorest 10% of households currently pay £271m a year towards the levy, while the costs of the Carbon Savings Communities and Affordable Warmth schemes, which are designed to help the poorest homes, come to just £220m a year.

Fairer alternatives

We also compared the system of adding a levy to household bills to two other ways of funding energy policy. The first was adding a levy to the energy bills of businesses (including energy suppliers), at least some of which would be passed on to households who buy their goods and services. The second was paying for the policy with money raised from income tax.

The proportions of household income required to meet the cost of three ways of funding energy policy.
University of Leeds, Author provided

We found that the household levy is the most regressive system. Costs are placed purely on household bills, with the richest households paying 0.16% of their income compared to the poorest paying 1.5% (over nine times more).

Adding a levy to business bills is an improvement. Under this system, the richest homes pay 0.19% of their household income and the poorest pay 1.05% (still nearly six times more).

But funding energy policy from income tax would mean that the lowest income households wouldn’t contribute at all and the richest households would pay 0.5% of their income. Compared to a household levy, this approach would reduce costs for 70% of UK households, while the richest 30% would see an increase. The lowest income group would save £102 a year, at an additional cost of £410 for the richest households – which, at less than £8 a week, would make a relatively small difference to their lives.

The ConversationOur analysis shows that the more you earn, the greater your energy demand, yet this is not reflected in current energy levy policy. It’s important to make sure that the costs associated with low carbon transitions are met by the households that cause the problem and those who can afford it, instead of hurting poorer households. We see it as essential that climate policies are compatible with social justice. Our research demonstrates it is clearly possible to design a system that is both fair and effective.

John Barrett, Professor of Energy and Climate Policy, University of Leeds and Anne Owen, Research Fellow in Sustainable Consumption, University of Leeds

This article was originally published on The Conversation. Read the original article.

Four tough actions that would help fight the global plastic crisis

Christine Cole, Nottingham Trent University

The environmental impact of plastic is finally receiving the attention it deserves. This is partly down to the BBC’s Blue Planet II highlighting the problem of ocean plastics. But it’s also because the Chinese government has recently imposed quality restrictions on the import of recyclable materials, in an attempt to address domestic concerns over pollution and public health.

Beijing’s move in effect closes down the export of recyclable plastics, paper and other materials from the world’s richest countries. The UK, rest of Europe, US, Australia and others have for a long time been dependent on China to take the poor quality materials that they collect and do not have the infrastructure or capacity to use themselves. Until more recycling plants are built to deal with it domestically, the UK faces a build-up of plastic waste.

Other countries in Asia will continue to accept some of the lower quality materials, but this is a temporary fix at best. Sending plastic to India, Vietnam or Cambodia instead of China may limit the amount that has to be stored, placed in landfill or burnt in the UK, but it does nothing to reduce the overall amount of plastic.

We cannot simply rely on the actions of concerned individuals. What’s needed goes beyond reusing plastic water bottles, stopping using plastic drinking straws and taking reusable bags to the supermarket.

Here are a few suggestions:

Recycle quality – not just quantity

1940s poster: ‘[there are] ENOUGH BOTTLES to meet easily all demands … if these bottles are kept busily working’

Recycling targets tend to focus on quantity, but the quality of materials collected is just as important. Recycling “quality” refers to how clean and well sorted individual materials are. Poorly sorted materials are referred to as “contaminated”, and it is this that China will no longer accept. (If you want to avoid contaminating your recycling collection, check out these top tips).

If the UK improved the quality of the material collected for recycling, it could still be sent to China. This would require a nationwide collection system for materials suitable to be used again (recycled). This may take the form of reworked household collections, comprehensive collections from business premises, or a revival of the “deposit and return” schemes that once covered glass bottles and today could also include plastic bottles, drinks cans or coffee cups.

Stop collecting stuff for the sake of it

Recycling collections from households are often criticised for being inconsistent and confusing. It is important to remember that local authorities do not themselves “recycle”. They collect waste and, separately, materials like glass bottles or cardboard boxes which are suitable for recycling.

After they have been collected these separated materials become secondary raw materials, which are only truly recycled when they are actually made into something else. Local authorities collect the materials that can be reprocessed into something else.

If the infrastructure to sort certain items or materials does not exist locally (as with some crisp packets, polystyrene take away boxes or coffee cups) it is only sensible for those items not to be collected. So stop collecting things for the sake of it, put in place the facilities to deal with a wider range of materials or ban the difficult to recycle materials.

Boost demand for recycled plastic

Countries like the UK need to develop their own demand for recycled material. This means supporting manufacturers to develop technology that can use it where possible.

Alternatively, the government could impose mandatory recycled content for various plastic products. Coca Cola, for instance, recently announced that by 2020 its bottles will contain 50% recycled material. This is a step in the right direction, but why only 50%? If this target was increased the sheer scale of production means there would be a huge impact.

Coca Cola makes more than 100 billion single-use plastic bottles a year, according to Greenpeace.
AS photo studio / shutterstock

Producers must be held responsible

Increase producer responsibility for the plastic products they place on the UK market. Existing arrangements could be reformed so that they encourage recyclability to be built in at the design stage, while incentivising the maximum use of recycled content. Regulations could tax or ban the use of non-recyclable products or those that use particularly difficult materials, and they could ban some single use plastic products (France has already done this). A 25p charge has recently been suggested to control the use of non-recycleable or hard to recycle coffee cups in the UK, which may reflect the success the 5p carrier bag charge had in reducing the number of single use plastic bags used by shoppers.

Pringles containers and Lucozade bottles have recently been highlighted as problems. The combination of multiple materials used to make them mean they are difficult to recycle without specialist techniques not available in most UK processing plants. Black plastic used for ready meal containers is also difficult to recycle and creates the kind of contamination problems the Chinese are trying to avoid. Why is this material still being used if it is recognised to be a problem and there are economic alternatives?

Let’s take advantage of the current mood. While there is a public focus on plastics, people should learn more about their purchasing decisions and recycling actions. On a larger scale, it is at times of crisis or failure that policy makers become open to new ideas, or old ones recycled. This is one such failure which offers a real opportunity to wake up and improve our environmental impact.

Christine Cole, Research Fellow, Architecture, Design and the Built Environment, Nottingham Trent University

This article was originally published on The Conversation. Read the original article.

CIE-MAP organises event on low carbon construction with UKGBC, Edinburgh Napier University and Landsec

On the 19th April CIE-MAP, Edinburgh Napier University and Landsec, sponsored a UKGBC event on whole life carbon reduction in the built environment. The event, Advancing Net Zero: next steps in holistic carbon reductions, was hosted at the Saint Gobain Innovation Centre in London. The event, aimed at built environment professionals, proved popular with all spaces booked inside 48 hours. The event featured 13 presentations focusing on different aspects of carbon reduction. It provided an ideal opportunity for industry and academia to share best practice on whole life carbon management at a project, organisation and industry level. CIE-MAP researcher Jannik Giesekam presented at the event. Slides from his presentation ‘From Paris to projects: aligning carbon targets in construction’ can be downloaded here. A full write up of the day will appear on the UKGBC website in the coming weeks.

Left to Right: Natalia Ford (UKGBC), Ed Dixon (Landsec), Francesco Pomponi (Edinburgh Napier University), and Jannik Giesekam (CIEMAP).

 

Aligning carbon targets for construction with (inter)national climate change mitigation commitments

CIEMAP researcher Jannik Giesekam has published a new article in a Special Issue of Energy and Buildings. The Special Issue is titled Embodied Energy and Carbon Efficiency: The Next Major Step Towards Zero-Impact Buildings. The paper presents a review of the carbon reduction targets set by the largest UK construction firms and discusses the challenges in aligning these with sectoral and national carbon reduction commitments. This follows on from prior CIEMAP work demonstrating the urgent need to reduce carbon emissions from construction activity.

Abstract:

In the face of a changing climate, a growing number of construction firms are adopting carbon reduction targets on individual projects and across their portfolios. In the wake of the Paris Agreement, some firms are seeking a means of aligning their targets with sectoral, national and international mitigation commitments. There are numerous ways by which such an alignment can be achieved, each requiring different assumptions. Using data from the UK construction industry, this paper reviews current company commitments and progress in carbon mitigation; analyses the unique challenges in aligning construction targets, and presents a series of possible sectoral decarbonisation trajectories. The results highlight the disparity between current company targets and the range of possible trajectories. It is clear that a cross-industry dialogue is urgently required to establish an appropriate response that delivers both a widely-accepted target trajectory and a plan for its delivery. This paper is intended to stimulate and support this necessary debate by illustrating the impact of different methodological assumptions and highlighting the critical features of an appropriate response.

Read the full paper at: https://doi.org/10.1016/j.enbuild.2018.01.023

 

Industrial decarbonisation of the pulp and paper sector: A UK perspective

Read the full article here.

Abstract

The potential for reducing industrial energy demand and ‘greenhouse gas’ (GHG) emissions in the Pulp and Paper sector (hereinafter denoted as the paper industry) has been evaluated within a United Kingdom (UK) context, although the lessons learned are applicable across much of the industrialised world. This sector gives rise to about 6% of UK industrial GHG emissions resulting principally from fuel use (including those indirectly emitted because of electricity use). It can be characterised as being heterogeneous with a diverse range of product outputs (including banknotes, books, magazines, newspapers and packaging, such as corrugated paper and board), and sits roughly on the boundary between energy-intensive (EI) and non-energy-intensive (NEI) industrial sectors. This novel assessment was conducted in the context of the historical development of the paper sector, as well as its contemporary industrial structure. Some 70% of recovered or recycled fibre is employed to make paper products in the UK. Fuel use in combined heat and power (CHP) plant has been modelled in terms of so-called ‘auto-generation’. Special care was taken not to ‘double count’ auto-generation and grid decarbonisation; so that the relative contributions of each have been accounted for separately. Most of the electricity generated via steam boilers or CHP is used within the sector, with only a small amount exported. Currently-available technologies will lead to further, short-term energy and GHG emissions savings in paper mills, but the prospects for the commercial exploitation of innovative technologies by mid-21st century is speculative. The possible role of bioenergy as a fuel resource going forward has also been appraised. Finally, a set of low-carbon UK ‘technology roadmaps’ for the paper sector out to 2050 have been developed and evaluated, based on various alternative scenarios. These yield transition pathways that represent forward projections which match short-term and long-term (2050) targets with specific technological solutions to help meet the key energy saving and decarbonisation goals. The content of these roadmaps were built up on the basis of the improvement potentials associated with different processes employed in the paper industry. Under a Reasonable Action scenario, the total GHG emissions from the sector are likely to fall over the period 1990-2050 by almost exactly an 80%; coincidentally matching GHG reduction targets established for the UK economy as a whole. However, the findings of this study indicate that the attainment of a significant decline in GHG emissions over the long-term will depends critically on the adoption of a small number of key technologies [e.g., energy efficiency and heat recovery techniques, bioenergy (with and without CHP), and the electrification of heat], alongside a decarbonisation of the electricity supply. The present roadmaps help identify the steps needed to be undertaken by developers, policy makers and other stakeholders in order to ensure the decarbonisation of the UK paper sector.

Thermodynamic insights and assessment of the ‘circular economy’

Read the full article here.

Abstract

This study analyses the effect on energy use of applying a wide range of circular economy approaches. By collating evidence on specific quantifiable approaches and then calculating and analyzing their combined full supply chain impacts through input-output analysis, it provides a more complete assessment of the overall potential scope for energy savings that these approaches might deliver than provided elsewhere. Assessment is conducted globally, across the EU-27 and in the UK.

Overall, the identified opportunities have the potential to save 6%–11% of the energy used to support economic activity, worldwide and in the EU, and 5%–8% in the UK. Their potential is equivalent to the total scope for other industrial energy efficiency savings.

The potential savings are further divided into those due to sets of approaches relating to food waste, steel production, other materials production, product refurbishment, vehicle provision, construction and other equipment manufacture. Each of these sets of approaches can make a key contribution to the total savings that are possible.

Complementary use of energy and exergy metrics illustrates the way in which energy use might change and for the first time provides indication that in most cases other energy efficiency measures are unlikely to be adversely affected by the circular economy approaches.

Potential for savings in the energy embodied in each key product input to each major sector is assessed, enabling prioritization of the areas in which the circular economy approaches have the greatest scope for impact and identification of supply chains for which they are underrepresented.

Circular Product Design. A Multiple Loops Life Cycle Design Approach for the Circular Economy

Read the full article here.

Abstract

The circular economy is a high priority subject of discussion in the current political and academic contexts; however, practical approaches in relevant disciplines like design are in need of development. This article proposes a conceptual framework for circular product design, based on four multiple loops strategies: (I) design to slow the loops, (II) design to close the loops, (III) design for bio-inspired loops, and (IV) design for bio-based loops. Recent literature, notably on life cycle design strategies, the circular economy conceptual model and the European Commission’s Circular Economy Package, is reviewed and product design cases illustrating each of the proposed are analysed. The article argues that different ‘circular’ approaches centred upon the life cycle design phases can provide practical guiding strategies during the design process and thus promote sustainable design solutions for the circular economy within the United Nation’s sustainable development goals.

1 2 3 4 5 11